
Dataset Analysis and CNN Models Optimization for Plant Disease Classification

D. Orsenigo,∗ C. Moroni,† and P. Monticone‡

University of Turin
(Dated: 23 June 2020)

We have attended the Kaggle challange Plant Pathology 2020 - FGVC7. In this effort we have
trained a convolutional neural network model with the given training dataset to classify testing
images into different disease categories. During the training phase we have adopted class balancing,
data augmentation, optimal dropout, epoch grid searching and, wherever possible, we have also
manually fine-tuned the auxiliary elements of the pipeline. The SVD decomposition of the dataset,
the convolutional filters and activation maps have been visualized. We have ultimately achieved a
mean column-wise ROC AUC of 0.937 applying EKM, a relatively shallow CNN defined and trained
from scratch, and 0.972 applying the pre-trained Keras model DenseNet121.

Contents

1. Problem 1

2. Data 1

3. Methods 2
3.1. Class Balancing with SMOTE 2
3.2. Data Augmentation with Keras

ImageDataGenerator 2
3.3. Model Architecture Exploration 2
3.4. Convolutional Autoencoder 3
3.5. Selected Model Architecture 4

4. Results 4

5. Conclusions 4

A. Online Content 5

B. Platform Limitations 5

C. Visualization 5
PCA 5
Training Histories 5
Filters and Activation Maps 6

References 6

1. PROBLEM

Misdiagnosis of the many diseases impacting agricul-
tural crops can lead to misuse of chemicals leading to the
emergence of resistant pathogen strains, increased input
costs, and more outbreaks with significant economic loss
and environmental impacts. Current disease diagnosis
based on human scouting is time-consuming and expen-
sive, and although computer-vision based models have

∗davide.orsenigo@edu.unito.it
†claudio.moroni@edu.unito.it
‡pietro.monticone@edu.unito.it

the promise to increase efficiency, the great variance in
symptoms due to age of infected tissues, genetic vari-
ations, and light conditions within trees decreases the
accuracy of detection.

2. DATA

Both the training and the testing datasets are com-
posed of 1821 high-quality, real-life symptom images of
multiple apple foliar diseases to be classified into four
categories: healthy (h), multiple diseases (m), rust
(r), scab (s).

Altough a leaf labeled as multiple diseases could
be affected by a variety of diseases including rust, scab
or both, we treated the classes as mutually exclusive be-
cause there is no taxonomy: in principle the model should
distinguish between all four classes, as none of them is an
abstraction of any of the others. The dataset is not bal-
anced, but distributed as follows (h = 516,m = 91, r =
622, s = 592).

FIG. 1: Sample of training images.

Even if we have ultimately decided not to apply the
PCA to reduce the dimensionality of the dataset, we be-
lieve it might be interesting to visualize the first ten prin-
cipal directions and qualitatively compare them with a
sequence of principal directions with lower retained vari-
ance. As we can appreciate in the figures reported in

2

FIG. 2: Pre-SMOTE truncated SVD.

the Appendix C, the principal components with lower
retained variance correspond to almost pure noise and
from the retained variance assesment (using the criterion
of 90% variance retention) we have obtained 429 compo-
nents.

Here instead we visualize the first two principal compo-
nents of a truncated SVD to qualitatively investigate
the linear separability of the dataset 1.

As one could have resonably expected given such a high
dimensionality, the dataset is not linearly separable.

Later in the report we will describe an attempt using
a 3.4, while in the next section we can verify the ampli-
fication of the classes performed by SMOTE and recognize
the clustering of the generated points.

3. METHODS

3.1. Class Balancing with SMOTE

SMOTE(sampling strategy, k neighbors) is a class
balancing algorithm that operates as follows:

• (one of) the minority class(es) is considered ;

• a point is randomly chosen and its first
n neighbors nearest neighbors are found ;

• one of those nearest neighbors is then randomly
selected, and the vector between this point and the
originally selected point is drawn ;

• this vector is multiplied by a number between 0 and
1, and the resulting synthetic point is added to the
dataset.

1 Assumption: if the dataset is linearly separable, the direction
along which which the classes diverge is one of the principal
components with larger retained variance, otherwise the noise
would be greater than the signal.

Besides the baseline variant, SVMSMOTE and ADASYN
have been tested too:

• SVMSMOTE starts by fitting an SVM on the data,
identifies the points which are more prone to mis-
classification (i.e. those on the border of the class
cluster) via its support vectors and then will over-
sample those points more than the others.

• ADASYN instead draws from a distribution over the
minority class(es) that is pointwise inversely pro-
portional to their density, so that more points are
generated where the minority class(es) are sparser,
and less points where they are more dense.

We have obtained the best performance apply-
ing baseline SMOTE with some fine-tuning on the
sampling strategy 2 and the n neighbors parameters.
For more details see Appendix B.

FIG. 3: Post-SMOTE truncated SVD.

3.2. Data Augmentation with Keras
ImageDataGenerator

We have adopted the Keras ImageDataGenerator and,
after a manual inspection of the images, we found that
the best data augmentation technique was a random pla-
nar rotation combined with random horizontal flip. 3

3.3. Model Architecture Exploration

We have implemented an exploration of all models and
here is reported the grid search that achieved the best

2 The value all means that all classes are resampled to match the
size of the majority class.

3 For further information read the Keras image pre-processing
API.

https://keras.io/api/preprocessing/image/
https://keras.io/api/preprocessing/image/

3

performance:

• some exploration and fine-tuning of the layers and
parameters of the models (i.p. a dropout layer for
the EKM only) ;

• variations of the optimizer (for the EKM only) ;

• optimal dropout and epoch number search ;

• checkpointing .

We couldn’t implement early stopping both in EKM
and DenseNet1214, since the fluctuations in either val-
idation loss, categorical accuracy or mean column-wise
ROC AUC where too high to properly set the min delta
and patience parameters in the TensorFlow implemen-
tation.

The best choice of the optimizer for the EKM proved
to be the RMSprop, while the standard adam performed
pretty well with the DenseNet121. The manual imple-
mentations of the dropout and early stopping searches
acted simultaneoulsy, so they performed like a grid
search. The dropout, epoch values and checkpoint cor-
responding to the highest mean column-wise ROC AUC
were saved and used during the testing phase.

Then, in order to establish the quantitative impact of
stocasticity in the initialization of the weights on EKM,
another EKM (that we will callEKM1) with the best drop is
trained and validated, and the best epochs of the previ-
ously checkpointed model and EKM1 are compared. There
was a small difference, therefore we decided to make three
submissions: one with the baseline EKM re-trained on all
the data and with the best drop, one with the check-
pointed model and one with the DenseNet121.

Besides fluctuations, we have noticed that the
DenseNet121 tends to reach higher submission scores.
See Appendix C.

3.4. Convolutional Autoencoder

The best we could achieve by inserting a covolutional
autoencoder between the smoted data, augmented data
and the model training is a 0.7 mean column-wise ROC
AUC, despite the large number of the configurations that
have been tried. The reason behind this relatively poor
performance could be that on the one hand an autoen-
coder with no pooling on the encoder side makes lit-
tle sense in terms of dimensionality reduction, while on
the other hand even a single bidimensonal maxpooling
caused the output image to be too little for the last EKM
layer to classify. See Appendix B and 3.3.

4 DenseNet121 is a CNN whose main feature relies on the connec-
tion between layers that are non contiguous (i.e. the output of
the first layer is not only of the input of the second layer but
also the third, fourth, etc.), which allows for feature reutilization
that ultimately improves performance.

FIG. 4: Schematic representation of the convolutional autoen-
coder.

The only way way we have managed to run it and see at
least some loss drop was to build a very shallow autoen-
coder (i.e. just a couple of layers besides the input and
the output), with the result that the loss didn’t decrease
significantly. Anyway, inspired by the work of others and
by some active trial and error, we have had a chance
to collect some architectural criteria to build a convolu-
tional autoencoder that at least exhibits learning. The
following is to be intended as an empirical recipe, with
no or little theoretical foundation supporting the choice
of its ingredients.

The autoencoder is composed of an encoder and a
decoder. Obviously the encoder should start with an
input layer, followed by some blocks of Conv2D and
Pooling layers. Deeper layers should have decreas-
ing filter numbers (for images as big as ours, a range
from 64 to 32 should work). The decoder should start
with a specular copy of the encoder, where Conv2D lay-
ers are substituted by Conv2DTranspose and Pooling
by UpSampling. Then the last two layers of the
decoder should be a BatchNormalization layer and
Conv2DTranspose with 3 filters (in order to be able
to compare output with input) activated by a sigmoid
(which explains the BatchNormalization layer). The
unknown number of Conv2D-Pooling blocks in the en-
coder (that determines the number of Conv2DTranspose-
UpSampling in the decoder) has to be jointly connected
with the number of Conv2D-Pooling layers of the net-
work. See 3.5.

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

4

FIG. 5: Schematic representation of the selected model archi-
tecture.

3.5. Selected Model Architecture

Some online resaerch and active trial and error with
the network architecture gave us some clues about how to
build from scratch an effective, dataset-dependent model
for image classification.

Obviously the network should start with a input layer,
followed by blocks of Conv2D-Pooling5 layers. The num-
ber of these blocks should be such that the last of them
outputs a representation of n × n pixels (× c channels)
where n is of the order of units. Then this should be
followed by 1-2 dense layers, and a final dense classifier
layer. If the classification is binary (sigmoid), then the
last layer should be preceeded by a BatchNormalization
layer.

The first convolutional layer of the model uses 3 x 3
filters with depth of 3 6. Since the visualization of the
convolutionl filters within the trained EKM might provide
insight into how the model works, in FIG. 12 we have
represented the first seven filters of the first convolutional
layer as rows of three subplots (one column per channel):
the darker the squares the smaller the weights.

In order to capture the application of filters to a se-
lected testing image or deeper activation outputs and
therefore trying to understand what features of the in-

5 MaxPooling in our case.
6 Equal to the number of channels of its input.

put are detected or preserved in the activation maps7,
in FIG.13,14 and 15 we visualize a 4 × 4 matrix of sub-
plots showing a sample of feature maps extracted from
the first, the third and the fifth convolutional layer.

4. RESULTS

The performance of the models has been evalu-
ated on mean column-wise ROC AUC: 0.972 for
DenseNet121 and 0.937 for EKM.

FIG. 6: Confusion matrices of EKM (bottom) and DenseNet121
(top) on validation set.

5. CONCLUSIONS

Since the optimal epoch number varies with the size
of training dataset, a possible third attempt to ob-
tain it would have seen the best epoch number to use
in the testing phase, when the model is re-trained on

7 We should verify that the maps close to the input image detect
high-resolution, fine-grained detail, whereas maps close to the
model output extract coarser, more abstract concepts.

5

all training data, extrapolated from a (best-epoch,
training-set-size) plot (given that stocasticity has
not been relevant).

This has been practically impossible for us because of
two main reasons: technical difficulty in combining Sci-
kit learning curves with a Keras model necessarily trained
with generators, and Appendix B. Those limitations pre-
vented us from instantiating a single Pipeline object in-
tegrating all the elements (SMOTE, ImageDataGenerator,
Model): this could have allowed us to perform a more
extensive and reliable8 grid search. Finally, as we have
already mentioned, those computational limitations pre-
vented us from implementing an effective convolutional
autoencoder: if we used the full-sized images, the au-
toencoder may have been deeper and that could have
plausibly yielded a better performance.

Appendix A: Online Content

• Explore the GitHub repository of the project.

• Read the code in the Jupyter notebook.

• Run the code in the Kaggle notebook.

Appendix B: Platform Limitations

Since the last unstable version of GPU-supported Ten-
sorFlow is required to run the code and we haven’t been
able to set the proper kernels up on our local machines,
we have been constrained to rely on a publicly available
cloud interactive environment like Kaggle, which pro-
vided free out of the box kernels for our purposes. The
only limitations are in terms of CPU RAM, which forced
us to downsize the images to about 200 × 200 pixels.

Appendix C: Visualization

PCA

FIG. 7: The first ten principal directions of the PCA.

8 If coupled with cross validation instead of 80%-20% splitting.

FIG. 8: Directions 200-210 of the PCA.

FIG. 9: Explained variance with optimal number of compo-
nents.

Training Histories

FIG. 10: Training history of the EKM.

FIG. 11: Training history of the DenseNet121.

https://github.com/InPhyT/NeuralNetworksProject
https://nbviewer.jupyter.org/github/InPhyT/NeuralNetworksProject/blob/master/Notebooks/notebook.ipynb
https://www.kaggle.com/inphyt2020/neuralnetworksproject

6

Filters and Activation Maps

FIG. 12: The first seven filters of the first convolutional layer
of the EKM.

FIG. 13: Activation maps extracted from the first convolu-
tional layer of EKM.

FIG. 14: Activation maps extracted from the third convolu-
tional layer of EKM.

FIG. 15: Activation maps extracted from the fifth convolu-
tional layer of EKM.

[1] Plant pathology 2020 - fgvc7: Identify the category of foliar
diseases in apple trees, URL https://www.kaggle.com/c/

plant-pathology-2020-fgvc7.
[2] R. Thapa, N. Snavely, S. Belongie, and A. Khan (2020),

URL https://arxiv.org/abs/2004.11958.

https://www.kaggle.com/c/plant-pathology-2020-fgvc7
https://www.kaggle.com/c/plant-pathology-2020-fgvc7
https://arxiv.org/abs/2004.11958

	Contents
	Problem
	Data
	Methods
	Class Balancing with SMOTE
	Data Augmentation with Keras ImageDataGenerator
	Model Architecture Exploration
	Convolutional Autoencoder
	Selected Model Architecture

	Results
	Conclusions
	Online Content
	Platform Limitations
	Visualization
	PCA
	Training Histories
	Filters and Activation Maps

	References

